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A New Method for the Evaluation of Thermal 
Conductivity and Thermal Diffusivity from 
Transient Hot Strip Measurements ~ 

W. Sabuga 2 and U. Hammerschmldt- '  

The standard straight-line fit to data of a transient hot strip (THS) experiment 
to determine the thermal conductivity 2 and thermal diffusivity a suffers from 
two major drawbacks: First, due to the statistical nature of the estimation 
procedure, there is no rehttion between the uncertainty of the measured value 
on one hand and the transport properties obtained on the other. Second+ in 
order to account for the heat capacity of the strip and outer boundary condi- 
tions, two intervals of the plot must be rejected belbre analyzing it. So lar. these 
intervals are selected arbitrarily. We now treat the THS working equation as a 
function of the Ibur parameters concerned. 2. a. U. (initial voltage), and t.  (time 
delay). Chi-square Iittings, l\~llowing the Lcvenberg Marquardt algorithm, are 
performed separately Ibr several overlapping time intervals of the entire plot 
to find ). and a with minimal standard deviation. In the course of subsequent 
iterations an individual weighting lactor is applied to each point to account 
for systematic errors. This procedure yields the "best" values of ,;. and a 
along with their individual errors, comprising the systematic and the statistical 
errors. Experimental resuhs on Pyrex glass 7740 were taken to verify the new 
procedure. 

KEY WORDS: Pyrex: thermal conductivity: thermal diffusivity: transient hot 
strip. 

I. I N T R O D U C T I O N  

C o m p a r e d  w i t h  s t e a d y  s t a t e  m e t h o d s  o f  m e a s u r e m e n t ,  t h e  t r a n s i e n t  h o t  

s t r i p  ( T H S I  m e t h o d  d e v e l o p e d  by  G u s t a f s s o n  et  al. [ 1 ]  to  d e t e r m i n e  t h e  

t h e r m a l  c o n d u c t i v i t y  2 a n d  t h e  t h e r m a l  d i f fu s iv i t y  a o f  s o l i d s  o f fe rs  a 
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number of advantages. Among these are short measurement times and a 
simple experimental setup. The complex evaluation method causes, however, 
considerable difficulties as far as the determination of the uncertainties of the 
measurands a and 2 is concerned. 

2. T H E O R Y  

In an ideal THS experiment, a current of sufficient intensity flows 
through an infinitely long and thin metal strip, which is completely sur- 
rounded by the dielectric to be measured. The entire electric power 
P = c o n s t  is transformed into Joule heat, which diffuses freely in the 
specimen. The temperature increase with time AT(t) of the strip is a 
measure of the thermal conductivity 2 and the thermal diffusivity a of the 
material. It leads to an increase in the electrical resistance of the strip, 
which can be measured as voltage drop U(t) along the strip [1]:  

~ll_i~ 1"( 
U( t ) = U .  + r ) = Uo + k['( r ) ( 1 ) 

412 x / ~  " 

where 

.[.2 

f ( r ) = r e r f ( ! )  ( 4 ~  [ 1 - e x p ( - 1 ) ]  ' " 

and 

T - -  
[ a (  t - t o ) ]  I,,'2 

d 

U. is the measurement voltage at t = 0, ~ is the temperature coefficient of 
the electrical resistance of the strip, r is the dimensionless time (square root 
of the Fourier number), t, is the time delay before the power is released in 
the strip, and / and d are the half-length and width, respectively, of the 
strip. The error function and the exponential integral are denoted by eft( • ) 
and Eft.), respectively. Equation (1) cannot be solved analytically with 
respect to the two measurands, 2 and a. In an iteration process, the four 
unknown parameters Uo, k,  a, and to must therefore be fitted to the linear, 
measured curve UAf(r~)) so that the relevant correlation coefficient 
reaches a maximum. This termination condition results in the squares of 
the deviations (g) between measured and calculated values becoming a 
minimum [2]:  

x-- z min 12, 
o" i / 
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where a~ is the standard deviation of the value Ui and describes the weight 
of this value. 

For the method of analysis used so far [ 1 ], initially the number of the 
parameters to be fitted is reduced from four to one, i.e., to the quantity a, 
belbre iteration is carried out. The simplifying assumption here is that there 
is a uniform distribution of the standard deviation to the individual 
measurement values U~ which means a uniform weighting of these data, 
l/a,= 1. Furthermore, it is assumed that the function f ( r ) c a n  be estimated 
to be . f ( r ) ~  r -  r"/(4rt) I/-" for r <0.7, and the set of data reduced to this 
range can be described by the square polynomial (1= Uo + A(t + to) I/2 + 
B(t+ to). This term leads directly to the time delay t o [3 -5] .  Finally, the 
two other parameters, Uo and k, can be excluded analytically so that only 
the quantity a must be fitted. 

It is an essential drawback of this method that in the condition 
r(a) <0.7 the quantity searched, a, is considered to be known. In addition, 
it can be easily demonstrated that the distribution of the standard devia- 
tion of U~ is in fact nonuniform. After all, the systematic measurement 
errors by which all measured values are affected are not taken into con- 
sideration in the evaluation. An improved method must not, therefore, limit 
the range covered by the experiment, [ r (a ) ] ,  from the very outset; this 
makes, however, the simultaneous fitting of all four parameters necessary. 
The systematic measurement errors should then be included in the analysis. 

The iterative search for the parameters Uo, k, a, and to is conducted 
according to the Levenberg-Marquardt  algorithm [2].  This method con- 
sists in finding such increments of the model parameters b~ (bj = Uo, b2 = k, 
h~ =a, b.~ = to) which correspond to a "movement"  along the gradient of 
the sum Z towards the minimum. These increments Ab~ are the solution of 
the system of equations 

4 

Y' 0t~.t Abl = ilk, k = 1 ..... 4 
/=1  

(3) 

with 

, ~0t,.A 1 + q~), k = l  

~k/- -  ( ~x,.j, k # 1 

1, I OU(b' ti) OU(b' ti) ] 

& = ~. e , -  u(L t,) ou(L t,) 
,=, a~ O&. 

(4) 



560 SabuRa and Hammerschmidt 

N is the number of measured points, /7 -  (I,~, 1) 2,  I) 3 ,  h4), q) is a measure of 
the "distance" fiom the minimuna searched. ~p disappears when the mini- 
mum is approximated. The individual derivatives covered by Eq. (4) are 
the lbllowing: 

U ~ U 
?1)) 0 U() 

- - = f (  r l  ?b, ?1< 

bU_?U=k~lir____) kr erf + - - e x p  - - 
@1)~ ?a ?;a 2a x//-~ 

= ) e,, (- 
~/)4 Clo 2 ( I+ Io )  x/~ 

The procedure proper starts with the assignment of values to U., the first 
voltage value measured, and to the material properties a and ,;, searched. 
Furthermore, to is set equal to zero. The procedure is then continued as 
Ibllows: 

1. Calculation of Zo =Z( U,, k, a, to). 

2. Calculation of [/k and x~,.:: solving of the system of equations (3) 
and estimation of the sum Zj=z(Uo+AUo,  k + A k ,  a + A a ,  
to + At()). 

3. If y,~ >ly,(,, <p is multiplied by I0. 

4. If y,] <Z(), ~ is divided by I0; assignment of the relevant values 
f i+ Ah to the parameters h and setting Z,, equal to Z). 

5. Return to step 2. 

The calculation is discontinued when the increments Ab, are sufficiently 
small. 

Systematic measurement errors can now be accounted for without any 
problem m Eq. (4) as the standard deviation a, of the measured values. 
The new evaluation method takes the lbllowing components into account: 
the instability of the current source and the measurement error of the 
voltmeter, the heat capacity of the strip, the variation of the power during 
constant-current operation, and a possible heating of the specimen surfaces 
if the experiment is carried out incorrectly. Because of these disturbing 
effects the voltage deviations are separately calculated for each point of 
time, summed up, and then used in Eq. (4) as the value of the standard 
deviation. Systematic deviations caused by the thermal contact resistance 
between the specimen and the strip and by end effects due to heavy 
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Fig. I. Dimensionless Ihclors of tile uncertainties (~_,*z) ~-" (for ,;.. curves I and 3) and 
, 1 2 (k a)(:(~) (for a. curves ") and 4) versus tipper dimensionless time limit r,,,.,, calculated for 

two cases: N= 100() (curves I and 2) and N = 500r~;;,~ Ict, rves 3 and 41. 

electrical leads, which were shown in Refs. 1, 3, and 6 to be negligibly 
small, are not taken into account  in the evaluation. 

The influence of random measurement  errors on the uncertainty of 
measurement of 2 and u has not yet been analyzed in detail in the 
literature. However, first investigations carried out at the PTB [6]  suggest 
that even smallest differences (0.007%) between two model curves Un(t) 
and U_q t) obtained by calculation may lead to differences of 20 % for a and 
of 6 % Ibr 2. The confidence interval of the parameter  h~ is given by 

= r r (  p.  .i) ] , ( x,,,,,, ) ' = \ N - j l  (~,.)J 2 

where F(P,j) is a function of the confidence level (P) and of the 
parameters number (j), z'x- being the corresponding element of the inverted 
matrix [:x] ( [ z * ] = [ : x ]  i). According to Rel;2 for P=95.4% and j = 4 ,  
1:{95.5%,4)=9.70. At the confidence level of 95.4%, the following are 
valid for the confidence intervals of the thermal conductivity and the 
thermal diffusivity: 

~-.=k-" = k = ( N - 4 )  (~*~)l~--- a - k2(N-4)" a-(C¢~) '- (5) 
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As the two dimensionless quantities (a*2) j-" and (k/a)(~.~3) ''2 usually differ, 
the individual uncertainties of a and 2 must differ as well. Figure 1 shows 
these quantities separately, as functions of the upper limit of the ranges 
[0, r ..... ], each time calculated for two complementary cases: 

1. hteal case: The distance between the real-time reference points 
t , . + t - t t  is constant for all r, whereas the number of measurement points 
changes according to N = 500r2: curves 3 and 4. 

2. Real case: The number of measurement points ( N =  1000) is 
constant, whereas the distance between the real-time reference points 
t~+ j - ti varies with r: curt,es 1 amt 2. 

Curves 3 and 4." In the ideal case of an infinitely extended sample and 
constant power output from the strip, the measurement errors of both a 
and 2 decrease with increasing Fourier number, i.e., with the duration of 
the experiment. 

Curt,es I and 2. In the practical case of the finitely extended sample, 
the duration of the experiment and thus the number of the measured values 
are limited because of the fixed outer boundary conditions. For an upper 
limit between r = 1.5 and r = 2, the measurement error of a is smallest; that 
of 2 decreases strictly monotonically with r. 

From an examination of Fig. 1 it can be seen that the uncertainty of 
the measurand 2 is in fact always smaller than that of a. 

In the course of the experiment, the initial deviations of the real system 
from the model increase even more with time, due, for example, to the 
increased electric power input into the strip in constant-current operation 
and the finite size of the sample body. Per definition, given by Eq. (5), the 
respective confidence intervals ,62/2 and ,6a/a of the measurands first 
decrease with increasing r, reach a minimum for certain r ..... values, and 
then increase again. Within the scope of the new evaluation method, the 
position of the minima is calculated and the measured curve evaluated in 
the range which furnishes the smallest standard deviations for the two 
measurands. 

3. R E S U L T S  

Specimens of Pyrex glass 7740 prepared by le Soci6t6 Corning France 
(Sovirel) were used for a first experimental verification of the above evalua- 
tion method. This material has been studied widely [5-7,  10-17] and is 
especially useful for qualification measurements. The thermal conductivity 
and the thermal diffusivity of this particular Pyrex glass were measured in 
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the temperature interval between 191 and 473 K. The temperature coef- 
ficient of the electrical resistance of the nickel strip used was calibrated in 
this temperature range. 

The measurement time At was 35 s for each measurement: 500 measure- 
ment points were recorded each time. The evaluation of the measurement 
series furnished an optimum measurement time A t o p  ' = 30 S ( for a minimum 
value of the confidence interval), i.e., a value somewhat smaller than the 
actual measurement time. Measurement times shorter than 30 s lead to a 
greater uncertainty of the results, whereas longer measurement times 
(measurements were carried out up to A t =  105 s) neither increase nor 
decrease the confidence interval. The uncertainties were estimated at 3.2 % 
lbr 2 and at 17% for a (confidence level: 95%). The repeatability was 
checked in nine measurements of the same kind which yielded a repeatability 
of a single measurement value of 1.3 % for 2 and of 9 % for a. 

The measured thermal conductivity ).(T) of Pyrex and its literature 
values are shown in Fig. 2. The THS data agree with the reference values 
with a some deviation from them at the high temperatures. 

In the temperature range indicated, the thermal diffusivity values 
decrease from 0.52 (at 191 K) to 0.41 mm-" . s - '  (at 423 K) and are approx- 
imately 25% smaller then the reference data [12, 13, 16, 17]. 

The deviation of both measured values, the thermal conductivity and 
thermal diffusivity, from THS data given in Ref. 6 is smaller than 1%. 
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Fig. 2. Temperature dependence of the dlermal conductivity of Pyrex glass 7740. 
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4. C O N C L U S I O N S  

The Levenberg Marquardt algorithm has been used for the first time 
to evaluate THS measurement curves, which allows all lbur unknown 
parameters of the mathematical model of the THS method to be fitted 
simultaneously. This means that, in addition to the measurands ). and a, 
the parameters "'initial voltage" and "time correction" are also fitted. So far, 
the two last quantities could only be estimated. Another essential advan- 
tage of the new procedure is that the uncertainty of the two measurands 
can now be determined analytically. It is shown in this context that the 
quantity 2 is always affected by a smaller uncertainty than that of a. The 
evaluation of various intervals of the same measurement ctu've previously 
have furnished values for a and 2 which deviate substantially. The newly 
developed method excludes this error and instead selects that interval for 
evaluation which guarantees nainimum uncertainties for a and 2. 

The results obtained both theoretically and by experinaent indicate 
that the valttes of the measurands a and ). are vet" 5, sensitive to even the 
smallest random measurement errors (0.007%1. This effect revolves con- 
siderable difficulties with regard to an improvement of the uncertainty 
of measurement by the THS method o1: at present, 3.2% for) ,  and 17% 
lot" a. It is therelbre to be assumed that the uncertainty of measurement of 
1% stated in the literature fox" the thermal conductivity and, especially, for 
the thermal diffusivity will hardly bear a closer scrutiny. 
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